The most developed subareas of automated reasoning are automated theorem proving (and the less automated but more pragmatic subfield of interactive theorem proving) and automated proof checking (viewed as guaranteed correct reasoning under fixed assumptions). Extensive work has also been done in reasoning by analogy induction and abduction.
Other important topics include reasoning under uncertainty and non-monotonic reasoning. An important part of the uncertainty field is that of argumentation, where further constraints of minimality and consistency are applied on top of the more standard automated deduction. John Pollock’s OSKAR system is an example of an automated argumentation system that is more specific than being just an automated theorem prover.
Tools and techniques of automated reasoning include the classical logics and calculi, fuzzy logic, Bayesian inference, reasoning with maximal entropy and a large number of less formal ad hoc techniques.
Automated reasoning has been most commonly used to build automated theorem provers. In some cases such provers have come up with new approaches to proving a theorem. Logic Theorist is a good example of this. The program came up with a proof for one of the theorems in Principia Mathematica that was more efficient (requiring fewer steps) than the proof provided by Whitehead and Russell. Automated reasoning programs are being applied to solve a growing number of problems in formal logic, mathematics and computer science, logic programming, software and hardware verification, circuit design, and many others. The TPTP (Sutcliffe and Suttner 1998) is a library of such problems that is updated on a regular basis. There is also a competition among automated theorem provers held regularly at the CADE conference (Pelletier, Sutcliffe and Suttner 2002); the problems for the competition are selected from the TPTP
Proof Systems
-
Boyer-Moore Theorem Prover (NQTHM)
The design of this system was influenced by John McCarthy and Woody Bledsoe. Started in 1971 at Edinburgh, Scotland, this was a fully automatic theorem prover built using Pure Lisp. The main aspects of NQTHM were:
- The use of Lisp as a working logic.
- The reliance on a principle of definition for total recursive functions.
- The extensive use of rewriting and “symbolic evaluation”.
- An induction heuristic based the failure of symbolic evaluation
-
HOL Light
Written in OCaml, HOL Light is designed to have a simple and clean logical foundation and an uncluttered implementation. It is essentially another proof assistant for classical higher order logic.
-
Coq
Developed in France, Coq is another automated proof assistant, which can automatically extract executable programs from specifications, as either Objective CAML or Haskell source code. Properties, programs and proofs are formalized in the same language called the Calculus of Inductive Constructions (CIC).